div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
↳ QTRS
↳ DependencyPairsProof
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
QUOT(x, 0, s(z)) → DIV(x, s(z))
QUOT(s(x), s(y), z) → QUOT(x, y, z)
DIV(x, y) → QUOT(x, y, y)
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
QUOT(x, 0, s(z)) → DIV(x, s(z))
QUOT(s(x), s(y), z) → QUOT(x, y, z)
DIV(x, y) → QUOT(x, y, y)
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(s(x), s(y), z) → QUOT(x, y, z)
Used ordering: Polynomial interpretation [25]:
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(x, y) → QUOT(x, y, y)
POL(0) = 0
POL(DIV(x1, x2)) = x1
POL(QUOT(x1, x2, x3)) = x1
POL(s(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(x, y) → QUOT(x, y, y)
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
DIV(y_0, s(y_1)) → QUOT(y_0, s(y_1), s(y_1))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Instantiation
↳ QDP
↳ DependencyGraphProof
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(y_0, s(y_1)) → QUOT(y_0, s(y_1), s(y_1))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))